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 Progress 
•  Acquired local WRF 
•  Hired liaison to Hazardous Weather Testbed 
•  Performed configuration tests for OUN WRF 
•  Developed social science survey 



 Plans 
•  Run more WRF configuration tests 
•  Use ADAS in OUN WRF 
•  Participate in Spring Experiment 
 OUN WRF 
 Survey 
  IT support 

•  Conduct social science project 
  “Call-to-action” statements 



 Collaborations 
•  CAPS 
 Employing ADAS in the OUN WRF 

•  SSWIM, OCS, NSSL 
 Social science project - evaluating “call-to-action” 

statements 



 Computational cluster with 10 nodes and 
80 processor cores   
•  Each core is an Intel E5620 (2.4 GHz) 

 InfiniBand communication link between 
nodes (20 Gbit/s) 

 WRF Version 3.1.1 
 Runs every hour out to 8 hours 



 Advanced Research WRF (ARW) solver 
 3-km grid-spacing 
  1296 x 1296 km domain centered on 

OUN 





 Boundary conditions: 
•   12Z WRF forecast 

 Initial conditions: 
•  Local Analysis and Prediction System (LAPS) 

analysis 
 “Hot starts” through LAPS 



 Goals: 
•  Begin to use adaptable high-resolution model in 

operational framework 
•  Instruct forecasters in benefits and limitations of 

using high-resolution output 
•  Provide guidance for other NWS offices in best 

practices 



 Bulk Microphysics Parameterizations (BMP) 
•  Comparison of parameterizations 
•  Initialization time tests   



•  Snook and Xue (2007) found that tornadogenesis 
in their simulations depended on the 
microphysics parameterization. 

•  Dawson et al. (2007) found that double-moment 
schemes improve  forecasts significantly for 
grid-spacing less than 1 km. 
 Double-moment schemes may not provide much 

advantage for coarser resolutions 



•  Millbrandt and Yau (2006d) found that biggest 
forecast improvement is change from single to 
double-moment microphysics. 

•  Why?  There are several atmospheric processes 
in which mixing ratio and number concentration 
are independent (Dawson et al. 2010) 
 Accretion 
 Diffusion 
 Evaporation 
 Sedimentation 



 10 microphysics schemes in the WRF 
 Investigated 8 (minus Thompson 

schemes) 
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 Lin and WDM6 microphysics performed 
best. 

 Model initialized at 17 UTC 
•  Some studies show forecasts >6 hrs unreliable 
•  What initialization time is most accurate? 
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 Lin and WDM6 microphysics performed 
best. 

 The 2100 and 2200 UTC initialization 
times produced best results. 

 Other cases? 
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 10/10/2010 
•  Lin and WDM6 microphysics performed best 

again 
 12/31/2010 

•  Best parameterization unclear 

Note:  Compared with 3-hr forecast for these 
cases. 



Parameterization Scheme 

Cumulus None 

Microphysics WRF Double-Moment 6-species 

Planetary Boundary Layer Yonsei University 

Land-Surface Model NOAH 

Longwave Radiation Rapid Radiative Transfer Model 

Shortwave Radiation Dudhia Scheme 



 Currently using the Local Analysis and 
Prediction System for data assimilation 

 Investigating ARPS Data Analysis System 
(ADAS) as replacement (ARPS 5.2.13) 



 ADAS 
•  3D-VAR analysis 
•  Ingests data from surface obs, profilers, RAOBS, 

and 25 WSR-88DS 
•  Can run 3D-VAR analysis in 7 minutes (no precip 

echoes) 
 Testing ARPS 3D-VAR analysis in WRF 3.2 

•  Waiting for convective cases this spring 



 OUN WRF  
•  Provide output to forecasters 

 Survey 
•  Evaluate OUN WRF performance 

 IT support 



 How can we improve response to warnings? 
•  How do people respond to “call-to-action” 

statements (CTAs)? 

F4 tornado damage at Picher, Oklahoma. 



 New survey to evaluate efficacy of call-to-
action statements in tornado warnings. 

 Compare current template to new 
statements based on findings in social 
science literature. 



 Respondents will identify the CTA 
statements that they consider the most 
life threatening, most likely to cause 
action, and convey the greatest certainty  

 Results will be analyzed and 
recommendations made for applications 
in NWS warning operations 
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